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Hyperbolicity of the Kidder-Scheel-Teukolsky formulation of Einstein’s equations coupled
to a modified Bona-Masso slicing condition
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Instituto de Ciencias Nucleares, Universidad Nacional Auto´noma de Me´xico, A.P. 70-543, Me´xico D.F. 04510, Mexico
~Received 21 March 2003; published 23 May 2003!

We show that the Kidder-Scheel-Teukolsky family of hyperbolic formulations of the 311 evolution equa-
tions of general relativity remains hyperbolic when coupled to a recently proposed modified version of the
Bona-Masso slicing condition.
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I. INTRODUCTION

The Cauchy problem for general relativity has receiv
renewed interest in the last few years. To a large extent,
interest has been motivated by the realization that the m
ematical structure of the evolution equations can have a
rect impact on the stability of numerical simulations. R
search has concentrated in developing strongly, or e
symmetric hyperbolic formulations of the evolution equ
tions of general relativity@1–15#. Symmetric hyperbolic sys
tems can be shown to be well posed, while the well pos
ness of strongly hyperbolic systems requires that so
additional smoothness conditions are verified. Having a w
posed system of evolution equations implies that one
find numerical discretizations that are stable in the sense
the growth of errors is bounded@16#.

A related problem to that of finding well-posed systems
evolution equations is the problem of finding well behav
coordinate systems. In a 311 formulation, this problem re-
duces to choosing conditions that determine the so-ca
‘‘gauge’’ quantities, that is, the lapse function and shift ve
tor. The lapse function determines the slicing of t
4-dimensional spacetime into 3-dimensional spatial hyp
surfaces, and the shift vector relates the spatial coordi
systems of nearby hypersurfaces. Our group has rece
concentrated in studying slicing conditions that can be w
ten as hyperbolic equations for a time functionT whose level
surfaces correspond to the members of the foliation@17,18#.
In Ref. @17# we concentrated in the so-called Bona-Mas
~BM! family of slicing conditions@3# and studied unde
which circumstances it avoids different types of pathologi
behaviors, while in Ref.@18# we proposed a modified versio
of the BM slicing condition that is well adapted to the ev
lution of static or stationary spacetimes and to the use o
densitized lapse as the fundamental variable.

Whenever one proposes a new gauge condition, the i
that arises of studying it, is if such a condition affects t
well-posedness of the system of evolution equations a
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whole. Such an analysis, for example, has been carried
by Sarbach and Tiglio@19# for a generalization of the BM
condition and more recently by Lindblom and Scheel@20#
for another generalization of the BM condition coupled to
‘‘ G-driver’’ shift condition @21#. In both these cases th
analysis was done using multi-parameter first order formu
tions of the Einstein evolution equations. Here we will co
sider the Kidder-Scheel-Teukolsky~KST! formulation @15#
coupled to the modified BM slicing condition studied in@18#.

This paper is organized as follows. In Sec. II we introdu
briefly the BM slicing condition and its modified form. Sec
tion III describes the KST formulation of the Einstein evol
tion equations. In Sec. IV we analyze the hyperbolicity of t
coupled system of KST evolution equations plus modifi
BM slicing condition. We conclude in Sec. V.

II. THE MODIFIED BONA-MASSO SLICING CONDITION

The BM family of slicing conditions@3# is well known
and has been discussed extensively in the literature~see for
example@17,22# and references therein!. This slicing condi-
tion asks for the lapse function to satisfy the following ev
lution equation

d

dt
a[~] t2Lb!a52a2f ~a!K, ~2.1!

with Lb the Lie derivative with respect to the shift vectorb i ,
K the trace of the extrinsic curvature andf (a) a positive but
otherwise arbitrary function ofa. This condition can be
shown to be hyperbolic in the sense that it is equivalen
asking for the time functionT to satisfy a generalized wav
equation.

In a recent paper@18#, we have proposed a modified ve
sion of condition~2.1! that keeps many of its important prop
erties but is at the same time well adapted to the evolution
static or stationary spacetimes and also to the use of a
sitized lapse as a fundamental variable. We believe that h
ing a slicing condition that is compatible with a static sol
tion is a necessary requirement if one looks for symme
seeking coordinates of the type discussed by Gundlach
Garfinkle @23# and by Bradyet al. @24#, that will be able to
find the Killing fields that static~or stationary! spacetimes
have, or the approximate Killing fields that many interesti
astrophysical systems will have at late times. This modifi
BM slicing condition has the form
©2003 The American Physical Society21-1
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] ta52a f ~a!~aK2¹ib
i !, ~2.2!

with ¹i the 3-covariant derivative associated withgi j . One
can show that this condition can also be obtained from
generalized wave equation for the time functionT and is
hence also hyperbolic independently of the Einstein eq
tions. One can easily show that, in contrast to Eq.~2.1!, the
right-hand side~RHS! of Eq. ~2.2! vanishes if we are in a
stationary spacetime and we have coordinates in which
stationarity is manifest.

III. THE KST FAMILY OF FORMULATIONS OF THE
EINSTEIN EVOLUTION EQUATIONS

The KST family of formulations of the Einstein evolutio
equations is a multi-parameter, fully first order, system
equations for 30 independent dynamical variab
$gi j ,Ki j ,dki j%, wheregi j is the spatial metric,Ki j the extrin-
sic curvature, anddki jª]kgi j . Notice that the definition of
thedki j is used only for obtaining initial data, thed’s are then
promoted to independent variables and their definition
terms of derivatives of theg’s then becomes a constraint.

If we define ]0[(] t2Lb)/a, the system of evolution
equations in vacuum can be written as

]0gi j 522Ki j , ~3.1!

]0Ki j 5Ri j 2~¹i¹ja!/a22KimK j
m

1KKi j 1ggi j C1zgabCa( i j )b , ~3.2!

]0dki j522]kKi j 22Ki j ]kln a

1hgk( iCj )1xgi j Ck , ~3.3!

where$g,z,h,x% are free parameters and

Cª~R2KabK
ab1K2!/2, ~3.4!

Ciª¹aKai2¹iK, ~3.5!

Cki jªdki j2]kgi j , ~3.6!

Clki jª] [ ldk] i j , ~3.7!

are constraints of the system~the first two are the Hamil-
tonian and momentum constraints, and the last two are c
sistency constraints!. Notice that since thedki j are not com-
ponents of a tensor, their Lie derivative with respect tob i

should be understood as

Lbdki j5ba]adki j1dai j]kb
a12dka( i] j )b

a12ga( i] j )]kb
a.

~3.8!

The Ricci tensorRi j that appears in the evolution equatio
for Ki j is written in terms of thed’s as

Ri j 5
1

2
gab~2]adbi j1]ad( i j )b1] ( iduabu j )2] ( idj )ab!

1
1

2
@di

abdjab1~dk22bk!G i j
k #2G im

k G jk
m , ~3.9!
10402
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where we have defineddkªgi j dki j ,bkªgi j di jk and
G jk

i
ª(djk

i1dk j
i2di

jk)/2. It is important to mention that the
system of equations above is not the most general form
the KST system which has 12 free parameters. Here we h
considered only the 4 parameters that are related to c
straint terms and ignored the 7 parameters that redefine
independent variables and the parameter related to
weight of the prescribed densitized lapse which we will
place with our modified BM slicing condition.

In the original analysis of KST, the system of equatio
~3.1!–~3.3! was shown to be strongly or even symmetric h
perbolic for certain regions of the parameter spa
$g,z,h,x%, with the lapse replaced by a ‘‘densitized lapse’q
given by

qª ln~g2sa!, ~3.10!

with g the determinant ofgi j , and s positive ~with a pre-
ferred value of 1/2). The densitized lapseq was assumed to
be a prescribed, i.e.,a priori known, function of space and
time. This condition was later relaxed by Sarbach and Tig
in @19# where the lapse was instead taken to be an arbit
function of g such that

seffª
g

a
]ga.0. ~3.11!

IV. HYPERBOLICITY OF THE KST FORMULATION
COUPLED TO THE MODIFIED BM CONDITION

We start from the modified BM slicing condition~2.2!
which we rewrite as

] ta52a f ~a!T, ~4.1!

with

TªaK2¹mbm. ~4.2!

We now define the first order quantity:

Aiª
] i ln a

f ~a!
. ~4.3!

From Eq.~4.1! one can easily show that

] tAi52] iT. ~4.4!

On the other hand, the derivatives ofa that appear in the
evolution equation forKi j given in the previous section, Eq
~3.2!, can be written in terms ofAi as

¹i¹ja

a
5 f @] ( iAj )1~ f 1a f 8!AiAj2G i j

k Ak#, ~4.5!

where we have used the fact that] iAj is symmetric. Notice
now that from the evolution equation forgi j , Eq. ~3.1!, one
can also find that

] tg522gT, ~4.6!
1-2
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which implies that

] tDi522] iT, ~4.7!

with Diª] i ln g. Comparing Eqs.~4.4! and ~4.7! we find

] tAi5
1

2
] tDi . ~4.8!

Now, from the definition ofdki j , we should haveDi
5di , with di as defined in the previous section. Howev
since in the KST formulation the evolution equations for t
dki j are modified by adding multiples of constraints to the
we will generally have] tDiÞ] tdi . Because of this, we pro
pose to modify the evolution equation forAi in the following
way:

] tAi52] iT1Fi~C,Ck ,Cklm ,Cklmn!. ~4.9!

From the evolution equation~3.3! for dki j , one can find
after some algebra

] tdi522] iT1a~h13x!Ci12aKabCiab1Cma
a] ib

m

1bm]mCia
a , ~4.10!

which means that if we take

2Fi5a~h13x!Ci12aKabCiab1Cma
a] ib

m1bm]mCia
a ,

~4.11!

then we will always have

] tAi5
1

2
] tdi . ~4.12!

The last equation allows us to define the quantities

QiªAi2di /2. ~4.13!

These quantities are then such that] tQi50, that is, they are
non-dynamical.

Another way to introduce theQi is the following: From
the modified BM condition and the evolution equation forgi j
it is easy to show that

] ta

a f
5

] tg

2g
, ~4.14!

which one can easily integrate to find

g1/25H~xi !expE da

a f
, ~4.15!

with H(xi) an arbitrary time-independent function. Th
shows that if we define

qª lnS g21/2expE da

a f D , ~4.16!

then we will have] tq50. Notice that theq defined above is
just the generalization of the densitized lapse defined in
10402
,

,

q.

~3.10! for the casef Þ1. One can now show that theQi
defined through Eq.~4.13! are precisely such thatQi5] iq,
and sinceq is time independent, then so are theQi .

Having introduced the non-dynamical quantitiesQi , we
can rewrite the derivatives ofAi appearing in the evolution
equation ofKi j through the term~4.5! in terms of derivatives
of Qi anddi . Since theQi do not evolve, they can be con
sidered as source terms. In this way, the system of evolu
equations forKi j anddki j becomes

]0Ki j ;
1

2
gab@2]adbi j1~11z!]ad( i j )b1~12z!] ( iduabu j )

2~11 f !] ( idj )ab1ggi j g
kl]a~dklb2dbkl!#, ~4.17!

]0dki j;22]kKi j 1hgk( ig
ab~] uauK j )b2] j )Kab!

1xgi j g
ab~]aKkb2]kKab!, ~4.18!

where the symbol; means equal up to principal part. Th
system above is exactly the same as the one presente
Sarbach and Tiglio in@19# with the replacementseff5 f /2.
The hyperbolicity analysis of that reference then follows
rectly. In particular, the non-zero eigenvalues of the syst
become

l15 f , ~4.19!

l2511x2
1

2
~11z!h1g~22h12x!, ~4.20!

l35
1

2
x1

3

8
~12z!h2

1

4
~11 f !~h13x!, ~4.21!

l451. ~4.22!

There are 12 eigenvectors associated with these non-zer
genvalues: two with bothl1 andl2, and four with bothl3
and l4. There are 12 more eigenvectors with eigenva
zero. The system can be shown to be strongly hyperboli

l j.0, for j 51,2,3,

l35
1

4
~3l111! if l15l2 .

The associated characteristic speeds are given simply
v i

656(l i)
1/2. In particular, we obtainv1

656 f 1/2, which
agrees with the expected result for the BM slicing conditio
Moreover, as shown already by Sarbach and Tiglio in R
@19#, one can also find symmetric hyperbolic subfamilies
this system.

V. DISCUSSION

We have studied the hyperbolicity of the KST family o
formulations of the Einstein evolution equations coupled t
recently proposed modified BM slicing condition. We fin
that the modified BM condition allows one to construct
non-dynamical functionq that generalizes the densitize
1-3
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lapse to the case when the functionf (a) defining the slicing
is different from 1. From this non-dynamical quantity on
can construct three first order non-evolving quantitiesQi
ª] iq that can be used to replace the spatial derivatives
the lapse in the evolution equation of the extrinsic curvat
Ki j . By doing this we are able to reduce the system of e
lution equations to one previously analyzed by Sarbach
Tiglio, which allows us to show that the coupled KSTplus
modified BM slicing condition system remains strongly h
perbolic under the same circumstances as before, an
identify directly the characteristic speeds. The analysis
th

C

rk

ds
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Sarbach and Tiglio can also be used to find symmetric
perbolic subfamilies of the full system.
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