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Hyperbolicity of the Kidder-Scheel-Teukolsky formulation of Einstein’s equations coupled
to a modified Bona-Masso slicing condition
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We show that the Kidder-Scheel-Teukolsky family of hyperbolic formulations of th& 8volution equa-
tions of general relativity remains hyperbolic when coupled to a recently proposed modified version of the
Bona-Masso slicing condition.
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[. INTRODUCTION whole. Such an analysis, for example, has been carried out
by Sarbach and Tigli¢19] for a generalization of the BM

The Cauchy problem for general relativity has receivedcondition and more recently by Lindblom and Schiz]
renewed interest in the last few years. To a large extent, thifor another generalization of the BM condition coupled to a
interest has been motivated by the realization that the math-I'-driver” shift condition [21]. In both these cases the
ematical structure of the evolution equations can have a di@nalysis was done using multi-parameter first order formula-
rect impact on the stability of numerical simulations. Re-tions of the Einstein evolution equations. Here we will con-
search has concentrated in developing strongly, or evefider the Kidder-Scheel-TeukolskKST) formulation [15]
symmetric hyperbolic formulations of the evolution equa-Cc0uPled to the modified BM slicing condition studied 8].

tions of general relativity1—15]. Symmetric hyperbolic sys- This paper is organized as follows. In Sec. Il we introduce

tems can be shown to be well posed, while the well posedl_JriefIy the BM slicing condition and its modified form. Sec-
ness of strongly hyperbolic system’s requires that som ion Il describes the KST formulation of the Einstein evolu-

. o o : ion equations. In Sec. IV we analyze the hyperbolicity of the
additional smoothness conditions are verified. Having a well- . . .
: . T coupled system of KST evolution equations plus modified
posed system of evolution equations implies that one cag slicing condition. We conclude in Sec. V.

find numerical discretizations that are stable in the sense that
the growth of errors is bounddd6].

Arelated problem to that of finding well-posed systems of
evolution equations is the problem of finding well behaved The BM family of slicing conditiong3] is well known
coordinate systems. In at3 formulation, this problem re- and has been discussed extensively in the literafsee for
duces to choosing conditions that determine the so-calledxample[17,22 and references therginThis slicing condi-
“gauge” quantities, that is, the lapse function and shift vec-tion asks for the lapse function to satisfy the following evo-
tor. The lapse function determines the slicing of thelution equation
4-dimensional spacetime into 3-dimensional spatial hyper-
surfaces, and the shift vector relates the spatial coordinate i (O L) a= — a2 (a)K 21
systems of nearby hypersurfaces. Our group has recently dta_( i Lpla=—atf(a)K, @D
concentrated in studying slicing conditions that can be writ- '
ten as hyperbolic equations for a time functibwhose level  with £, the Lie derivative with respect to the shift vece,
surfaces correspond to the members of the foliafioh18|. K the trace of the extrinsic curvature ah) a positive but
In Ref. [17] we concentrated in the so-called Bona-Massootherwise arbitrary function ofv. This condition can be
(BM) family of slicing conditions[3] and studied under shown to be hyperbolic in the sense that it is equivalent to
which circumstances it avoids different types of pathologicalasking for the time functiol to satisfy a generalized wave
behaviors, while in Ref.18] we proposed a modified version equation.
of the BM slicing condition that is well adapted to the evo-  In a recent pap€il8], we have proposed a modified ver-
lution of static or stationary spacetimes and to the use of gion of condition(2.1) that keeps many of its important prop-
densitized lapse as the fundamental variable. erties but is at the same time well adapted to the evolution of

Whenever one proposes a new gauge condition, the issigtatic or stationary spacetimes and also to the use of a den-
that arises of studying it, is if such a condition affects thesitized lapse as a fundamental variable. We believe that hav-
well-posedness of the system of evolution equations as mg a slicing condition that is compatible with a static solu-

tion is a necessary requirement if one looks for symmetry
seeking coordinates of the type discussed by Gundlach and

Il. THE MODIFIED BONA-MASSO SLICING CONDITION

*Electronic address: malcubi@nuclecu.unam.mx Garfinkle[23] and by Bradyet al. [24], that will be able to
"Electronic address: corichi@nuclecu.unam.mx find the Killing fields that statiqor stationary spacetimes
*Electronic address: cervera@nuclecu.unam.mx have, or the approximate Killing fields that many interesting
SElectronic address: nunez@nuclecu.unam.mx astrophysical systems will have at late times. This modified
IElectronic address: marcelo@nuclecu.unam.mx BM slicing condition has the form
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da=—af(a)(aK—V,8), (2.2 where we have definedd:=g"dy;;,b:=g"d;;x and
. _ o ' _ [j:=(dy +dy;'=d'j)/2. Itis important to mention that the

with V; the 3-covariant derivative associated wg). One  system of equations above is not the most general form of
can show that this condition can also be obtained from ahe KST System which has 12 free parameters_ Here we have
generalized wave equation for the time functibrand is  considered only the 4 parameters that are related to con-
hence also hyperbolic independently of the Einstein equastraint terms and ignored the 7 parameters that redefine the
tions. One can easily show that, in contrast to &), the  independent variables and the parameter related to the
right-hand side(RHS) of Eq. (2.2) vanishes if we are in a weight of the prescribed densitized lapse which we will re-
stationary spacetime and we have coordinates in which thiglace with our modified BM slicing condition.

stationarity is manifest. In the original analysis of KST, the system of equations
(3.1)—(3.3) was shown to be strongly or even symmetric hy-
Ill. THE KST FAMILY OF FORMULATIONS OF THE perbolic for certain regions of the parameter space
EINSTEIN EVOLUTION EQUATIONS {v,¢{,n,x}, with the lapse replaced by a “densitized lapsg”
given by

The KST family of formulations of the Einstein evolution
equations is a multi-parameter, fully first order, system of q:=In(g "a), (3.10
equations for 30 independent dynamical variables
{gij .Kij .dkij}, whereg;; is the spatial metrid(;; the extrin-  with g the determinant ofy;;, and o positive (with a pre-
sic curvature, and;:=d,g;; . Notice that the definition of ferred value of 1/2). The densitized lapgevas assumed to
thed,;; is used only for obtaining initial data, tltés are then  be a prescribed, i.eg priori known, function of space and
promoted to independent variables and their definition inime. This condition was later relaxed by Sarbach and Tiglio
terms of derivatives of thg's then becomes a constraint.  in [19] where the lapse was instead taken to be an arbitrary

If we define do=(d,— Ls)/a, the system of evolution function ofg such that
equations in vacuum can be written as

doQij= —2K

g
ijo (31) Ueﬁ==zaga>0. (311)

&OK” = R” - (ViVja)/a— 2K|mK;n
IV. HYPERBOLICITY OF THE KST FORMULATION

+KKjj + v9;;C+ £g*Caijp (3.2 COUPLED TO THE MODIFIED BM CONDITION
dodyii = — 20,Ki; — 2K dyIn a We start from the modified BM slicing conditio(2.2)
which we rewrite as
+ 79ki Cj)+ x9ij Ci s (3.3
dha=—af(a)T, (4.1
where{y,{,n,x} are free parameters and
ith
Ci=(R—K K™+ K2)/2, 34 W
Ti=aK—-V_ B™. 4.2
Ci=VK 4~ VK, 3.5 K= V8 4.2
We now define the first order quantity:
Cuij =kij — Tij » (3.9
ailn o
Cikij = dpdigij » 3.7 A “Ha) (4.3
are constraints of the systefthe first two are the Hamil- )
tonian and momentum constraints, and the last two are cofd="om Eg.(4.1) one can easily show that
sistency constraintsNotice that since thé,;; are not com-
4 ‘ kij A= —0T. (4.9

ponents of a tensor, their Lie derivative with respecisto

should be understood as On the other hand, the derivatives @fthat appear in the

L 50yi5= B20a0yi; + aij B2+ 20y 7)) B2+ 2010 1B evolution equation foK;; given in the previous section, Eq.
3.9 (3.2, can be written in terms o4; as

The Ricci tensoR;; that appears in the evolution equation ViV, _f Y K
for Kj; is written in terms of thed’s as a LaaA)+(F+af HAA = TA, (4.5

where we have used the fact thigh\; is symmetric. Notice
now that from the evolution equation fg; , Eq.(3.1), one
can also find that

1
Rij =§gab( — dalpij + dadij)b T d(idjab)j) — 9idj)an)

1
b k k
+§[dia djapt (d—2b T 1 - Tk 3.9 ag=—2gT, (4.6)

104021-2



HYPERBOLICITY OF THE KIDDER-SCHEEE. . .

which implies that
hDj=—24T, 4.7

with D;:=g;ln g. Comparing Eqs(4.4) and (4.7) we find
1

Now, from the definition ofd,;;, we should haveD;
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(3.10 for the casef#1. One can now show that th®,
defined through Eq4.13 are precisely such th&@; = 9;q,
and sinceq is time independent, then so are 1Qe.

Having introduced the non-dynamical quantit®s, we
can rewrite the derivatives &; appearing in the evolution
equation ofK;; through the ternt4.5) in terms of derivatives
of Q; andd;. Since theQ; do not evolve, they can be con-
sidered as source terms. In this way, the system of evolution
equations foiK;; andd,;; becomes

=d;, with d; as defined in the previous section. However, 1
since in the I_(_ST formula_mon the_ evolution equations for the doKij~ Egab[ — 90+ (1+ ) da0 i)+ (1= ) d(i0jan))
dy;; are modified by adding multiples of constraints to them,
we will generally have);D;# 4,d; . Because of this, we pro-

pose to modify the evolution equation fay in the following
way:
A=~ T+ Fi(C,Cx,Cyim,Crimn)- (4.9

From the evolution equatiof8.3) for d;;, one can find
after some algebra

0 di=—20,T+ a(5+3x)Ci+2aK?®Ci,,+C,, 25 8™
+BM9mCis?, (4.10
which means that if we take

2F;=a(7+3x)Ci+2aK**Cigy+ Cp, 20 B+ BM91nCi"
(4.1

then we will always have

1
_&tdi .

atAi = 2

(4.12

The last equation allows us to define the quantities

(4.13

These quantities are then such th@;=0, that is, they are
non-dynamical.

Another way to introduce th@); is the following: From
the modified BM condition and the evolution equation dgr
it is easy to show that

Qi :=Ai - d|/2

c?ta' _ 5tg
of = 29" (4.19
which one can easily integrate to find
. da
1/2_ i

with H(x'") an arbitrary time-independent function. This

shows that if we define

da
. —-1/2
q-—lrI(g exr)f —af),

then we will haved,q=0. Notice that they defined above is

(4.1

—(1+1)ddjyap+ 99" da(dip—dpi) 1, (4.17)
do0kij~ — 20kKij + 79k 92°( 9|0/ Kjyp— 9y K ab)
+ X0i;9%°( 92K kp— IxKap), (4.18

where the symbok means equal up to principal part. The
system above is exactly the same as the one presented by
Sarbach and Tiglio if19] with the replacementrq= /2.

The hyperbolicity analysis of that reference then follows di-
rectly. In particular, the non-zero eigenvalues of the system
become

(4.19

1
)\2:1+X_§(1+§)77+7(2_7I+2X)a (4.20

1 3 1
Ng= X+ 5(1—5)77— Z(1+f)(77+3x), (4.21

There are 12 eigenvectors associated with these non-zero ei-
genvalues: two with boti; and\,, and four with bothx 5

and \,. There are 12 more eigenvectors with eigenvalue
zero. The system can be shown to be strongly hyperbolic if

\;>0, forj=1,2,3,

1
)\322(3)\1"‘1) if )\1:)\2

The associated characteristic speeds are given simply by
v ==+(\;)¥2 In particular, we obtairv; =+ {2 which
agrees with the expected result for the BM slicing condition.
Moreover, as shown already by Sarbach and Tiglio in Ref.
[19], one can also find symmetric hyperbolic subfamilies of
this system.

V. DISCUSSION

We have studied the hyperbolicity of the KST family of
formulations of the Einstein evolution equations coupled to a
recently proposed modified BM slicing condition. We find
that the modified BM condition allows one to construct a

just the generalization of the densitized lapse defined in Ecpnon-dynamical functionq that generalizes the densitized
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lapse to the case when the functitfw) defining the slicing Sarbach and Tiglio can also be used to find symmetric hy-
is different from 1. From this non-dynamical quantity one perbolic subfamilies of the full system.

can construct three first order non-evolving quantiti@s

:=0,q that' can be useq to repla}ce the spatia! dt_arivatives of ACKNOWLEDGMENTS

the lapse in the evolution equation of the extrinsic curvature

Kj; . By doing this we are able to reduce the system of evo- We thank Olivier Sarbach and Manuel Tiglio for many

lution equations to one previously analyzed by Sarbach andseful comments. This work was supported in part by
Tiglio, which allows us to show that the coupled K®lus = CONACyT through the repatriation program and grants
modified BM slicing condition system remains strongly hy- 149945, 32551-E and J32754-E, by DGAPA-UNAM through

perbolic under the same circumstances as before, and grants IN112401 and IN122002, and by DGEP-UNAM

identify directly the characteristic speeds. The analysis ofhrough a complementary grant.

[1] C. Bona and J. Mass®hys. Rev. Lett68, 1097(1992. Nonlinear Anal.10, 353(1997).

[2] C. Bona and J. Massdnt. J. Mod. Phys. &, 88 (1993. [13] A. Anderson and J.W. York, Phys. Rev. L8R, 4384(1999.

[3] C. Bona, J. MasscE. Seidel, and J. Stela, Phys. Rev. L&, [14] M. Alcubierre, B. Brigmann, M. Miller, and W.-M. Suen,
600 (1995. Phys. Rev. D60, 064017(1999.

[4] Y. Choquet-Bruhat and J. York, C. R. Acad. Sci., Ser. I: Math.[15] L.E. Kidder, M.A. Scheel, and S.A. Teukolsky, Phys. Rev. D
321, 1089(1995. 64, 064017(2001).

[5] S. Frittelli and O. Reula, Phys. Rev. Left6, 4667(1996. [16] G. Calabrese, J. Pullin, O. Sarbach, and M. Tiglio, Phys. Rev.

[6] S. Frittelli and O. Reula, J. Math. Phy40, 5143(1999. D 66, 041501R) (2002.

[7] H. Friedrich, Class. Quantum Grai3, 1451(1996. [17] M. Alcubierre, Class. Quantum Gra20, 607 (2002.

[8] M.H. van Putten and D. Eardley, Phys. Rev. 93, 3056 [18] M. Alcubierreet al.,, gr-qc/0303069.
(1996. [19] O. Sarbach and M. Tiglio, Phys. Rev. @5, 064023(2002.

[9] A. Abrahams, A. Anderson, Y. Choquet-Bruhat, and J. York, C.[20] L. Lindblom and M.A. Scheel, gr-qc/0301120.
R. Acad. Sci., Ser. llIb: Sci. Terre Planet@®3 835(1996. [21] M. Alcubierre et al, Phys. Rev. D67, 084023(2003.

[10] C. Bona, J. MasscE. Seidel, and J. Stela, Phys. Rev.5B, [22] M. Alcubierre et al, Phys. Rev. Lett87, 271103(2002.
3405(1997). [23] D. Garfinkle and C. Gundlach, Class. Quantum Gi#y.4111

[11] A. Abrahams, A. Anderson, Y. Choquet-Bruhat, and J. York, (1999.
Class. Quantum Grat4, A9 (1997. [24] P.R. Brady, J.D.E. Creighton, and K.S. Thorne, Phys. Rev. D

[12] A. Anderson, Y. Choquet-Bruhat, and J. York, Topol. Methods 58, 061501(1998.

104021-4



